|Table of Contents|

Progress in Effects of Transgenic Bt Crops on the Aquatic Ecosystem(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2013 04
Page:
569-574
Research Field:
Reviews
Publishing date:

Info

Title:
Progress in Effects of Transgenic Bt Crops on the Aquatic Ecosystem
Author(s):
CHEN Xiuping WANG Jiamei ZHU Haojun LI Yunhe PENG Yufa
(1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China)
(2College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China)
Keywords:
transgenic crop Bacillus thurigiensis Bt protein Trichoptera aquatic ecosystem
CLC:
Q788
PACS:
DOI:
10.3724/SP.J.1145.2013.00569
DocumentCode:

Abstract:
Bt proteins from transgenic crops can be transferred from terrestrial ecosystems to stream ecosystems through exudation from roots, dispersal of pollen, and movement of post-harvest crop residues, thus posing potential risk to the safety of aquatic life in the water environment. Recently, studies showed that crop tissue breakdown is unlikely to be altered by introduction of Bt gene, but high concentrations of Bt CryI proteins have adverse effects on larvae of Trichoptera, which has close genetic relationship with Lepidoptera. Therefore it is proposed that toxins in transgenic crop byproducts may affect the stream ecosystems adjacent to agricultural fields. It is extremely necessary to assess the potential risks of Bt protein released by Bt crops on aquatic ecosystem. Finally, long-term laboratory monitoring of Bt protein on a variety of representative aquatic organisms is also proposed. Fig1, Tab 1, Ref 40

References

James C. 2011年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2012, 32 (1): 1-14 [James C. Global status of commercialized biotech/GM crops: 2011 [J]. China Biotechnol, 2012, 32 (1): 1-14]
Schneppf E, Crickmore N, Vanrie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins [J]. Microbiol Mol Rev, 1998, 62 (3): 775-806
Brookes G, Barfoot P. GM Crops: Global Socio-economic and Environmental Impacts 1996-2008 [M]. Dorchester: PG Economics Ltd, 2010
Romeis J, Bartsch D, Bigler F. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods [J]. Nat Biotechnol, 2008, 26 (2): 203-208
朱祯. 转基因作物对生态环境的利弊分析[J]. 生物技术进展, 2011, 1 (4): 233-234
Yu HL, Li YH, Wu KM. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms [J]. J Integr Plant Biol, 2011, 53 (7): 520-538
Li YH, Romeis J. Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum [J]. Biol Control, 2010, 53: 337-344
Duan JJ, Marvier M, Huesing J, Dively G Huang ZY. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae) [J]. PLoS ONE, 2008, 3 (1): e1415. DOI:10.1371/journal.pone.0001415
Yao HW, Jiang CY, Ye GY, Hu C, Peng YF. Toxicological assessment of pollen from different Bt rice lines on Bombyx mori (Lepidoptera: Bombyxidae) [J]. Environ Entomol, 2008, 37 (3): 825-837
Vaufleurya AD, Kramarza PE, Bineta P, Cortetc J, Cauld S, Andersene MN, Plumeya E, Coeurdassiera M, Kroghf PH. Exposure and effects assessments of Bt-maize on non-target organisms (gastropods, microarthropods, mycorrhizal fungi) in microcosms [J]. Pedobiologia, 2007, 51: 185-194
Viktorov AG. Transfer of Bt corn byproducts from terrestrial to stream ecosystems [J]. Rus J Plant Physiol, 2011, 58 (4):543-548
Carstens K, Anderson J, Bachman P, Schrijver A D, Dively G, Federici B, Hamer M, Gielkens M, Jensen P, Lamp W, Rauschen S, Ridley G, Romeis J, Waggoner A. Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing [J]. Transgenic Res, 2011, DOI: 10.1007/s11248-011-9569-8
Tank JL, Rosi-Marshall EJ, Royer TV, Whiles MR, Griffiths NA, Frauendorf TC, Treering DJ. Occurrence of maize detritus and a transgenic insectidical protein (Cry1Ab) within the stream network of an agricultural landscape [J]. Proc Natl Acad Sci, 2010, 107 (41): 17645-17650
Douville M, Gagne F, Blaise C, Andre C. Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment [J]. Ecotox Environ Saf, 2007, 66: 195-203
Douville M, Gagne F, Andre C, Blaise C. Occurrence of the transgenic corn cry1Ab gene in fresh water mussels (Elliptio complanata) near corn fields: evidence of exposure by bacterial ingestion [J]. Ecotox Environ Saf, 2009, 72: 17-25
Saxena D, Flores S, Stotzky G. Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events [J]. Soil Boil Biochem, 2002, 34:133-137
李云河, 王桂荣, 吴孔明, 张永军, 原国辉, 郭予元. Bt作物杀虫蛋白在农田土壤中残留动态的研究进展[J]. 应用与环境生物学报, 2005, 11 (4): 504-508 [Li YH, Wang GR, Wu KM, Zhang YJ, Yuan GH, Guo YY. Progress in persistence dynamics of insecticidal proteins released from Bt crops in cropland [J]. Chin J Appl Environ Biol, 2005, 11 (4) : 504-508]
Saxena D, Stewart CN, Altosaar I, Shu QY, Stotzky G. Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco [J]. Plant Physiol Bioch, 2004, 42: 383-387
Saxena D, Flores S, Stotzky G. Insecticidal toxin in root exudates from Bt corn [J]. Nature, 1999, 402 (2): 480
Baumgarte S, Christoph CT. Field studies on the environmental fate of the Cry1Ab Bt toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere [J]. Mol Ecol, 2005, 14: 2539-2551
Rosi-Marshall EJ, Tank JL, Royer TV, Whiles MR, Evans-White M, Chambers C, Griffiths NA, Pokelsek J, Stephen ML. Toxins in transgenic crop byproducts may affect headwater stream ecosystems [J]. Proc Natl Acad Sci, 2007, 104 (41): 16204-16208
Prihoda KR, Coats JR. Aquatic fate and effects of Bacillus thuringiensis Cry3BB1 protein: toward risk assessment [J]. Environ Toxicol Chem, 2008, 27 (4): 793-798
Aylor D, Schultes N, Shields E. An aerobiological framework for assessing cross-pollination in maize [J]. Agric For Meteorol, 2003, 119: 111-129
Hofmann F, Epp R, Kratz A, Kalchschmid A, Maisch B, Müller E, Kuhn U, Kratz W, Ober S, Radtke J, Schlechtriemen U, Schmidt G, Schröder W, Vögel DR, Wedl N, Wosniok W. Monitoring of Bt-maize pollen exposure in the vicinity of the nature reserve Ruhlsdorfer Bruch in northeast Germany 2007 to 2008 [J]. Umweltwiss Schadst Forsch, 2010, 22 (3): 229-251
Jensen PD, Dively GP, Swan CM, Lamp WO. Exposure and nontarget effects of transgenic Bt corn debris in streams [J]. Environ Entomol, 2010, 39 (2): 707-714
Griffiths NA, Tank JL, Royer TV, Rosi-Marshall EJ, Whiles MR, Chambers CP, Frauendorf TC, Evans-White MA. Rapid decomposition of maize detritus in agricultural headwater streams [J]. Ecol Appl, 2009, 19 (1):133-142
Li YH, Wu KM, Zhang YJ, Yuan GH. Degradation of Cry1Ac protein within transgenic Bacillus thuringiensis rice tissues under field and laboratory conditions [J]. Environ Entomol, 2007, 36 (5): 1275-1282
Swan CM, Jensen PD, Dively GP, Lamp WO. Processing of transgenic crop residues in stream ecosystems [J]. J Appl Ecol, 2009, 46: 1304-1313
Axelsson EP, Hjalten J, LeRoy CJ, Julkunen-Tiitto R, Wennstrom A, Pilate G. Can leaf litter from genetically modified trees affect aquatic ecosystems [J]? Ecosystems, 2010, 13: 1049-1059
Axelsson EP, Hjalten J, LeRoy CJ, Whitham TG, Julkunen-Tiitto R, Wennstrom A. Leaf litter from insect-resistant transgenic trees causes changes in aquatic insect community composition [J]. J Appl Ecol, 2011, 48: 1472-1479
Chambers CP, Whiles MR, Rosi-Marshall EJ, Tank JL, Royer TV, Griffiths NA, Evans-White MA, Stojak AR. Responses of stream macroinvertebrates to Bt maize leaf detritus [J]. Ecol Appl, 2010, 20 (7): 1949-1960
Mendelson M, Kough J, Vaituzis Z, Matthews K. Are Bt crops safe [J]? Nat Biotechnol, 2003, 21 (9): 1003-1009
Bøhn T, Primicerio R, Hessen DO, Traavik T. Reduced fitness of daphnia magna fed a Bt-transgenic maize variety [J]. Arch Environ Contam Toxicol, 2008, 55: 584-592
Bøhn T, Traavik T, Primicerio R. Demographic responses of daphnia magna fed transgenic Bt-maize [J]. Ecotoxicology, 2010, 19: 419-430
Raybould A, Vlachos D. Non-target organism effects tests on Vip3A and their application to the ecological risk assessment for cultivation of MIR162 maize [J]. Transgenic Res, 2011, 20: 599-611
ASTM. Standard test methods for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. E1706-05 [A]. In: ASTM Annual Book of Standards, Vol 11.06 [M]. American Society for Testing and Materials, Philadelphia, PA, 2008
OECD. Guidelines for the testing of chemicals / section 2: effects on biotic systems Test No. 202: Daphnia sp. Acute immobilisation test [S]. Organisation for Economic Cooperation and Development, Paris, 2004
US EPA. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates [S]. 2nd ed. US EPA/600/R-99/064, Duluth, MN, 2000
Pham MA, Nam YK, Kim SH, Kim DS, Cho SH, Kim, BS, Lee SM. Preliminary studies on the effects of dietary genetically modified soya and corn on growth performance and body composition of juvenile olive flounder (Paralichthys olivaceus) and rockfish (Sebastes schlegeli) [J]. Fish Sci, 2010, 13 (1): 63-70
徐志远, 刘阳, 邢福国, 杨晓光. 转Cry1Ac/SCK基因糙米作鲤鱼日粮原料营养学评价[J]. 粮食与饲料工业, 2011, 7: 57-60 [Xu ZY, Liu Y, Xing FG, Yang XG. Nutritional safety assessment of the brown rice genetically modified with Cry1Ac and SCK as feed on carp [J]. Cereal Feed Ind, 2011, 7: 57-60]

Memo

Memo:
-
Last Update: 2013-08-22