|Table of Contents|

Research Progress of Biogenic Manganese Oxides and Application Potential in Water Treatment Process(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2013 01
Research Field:
Publishing date:


Research Progress of Biogenic Manganese Oxides and Application Potential in Water Treatment Process
LIANG Jinsong BAI Yaohui HU Chengzhi William Jefferson QU Jiuhui
(1State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)
(2University of Chinese Academy of Sciences, Beijing 100049, China)
biogenic manganese oxide manganese-oxidizing microorganism oxidation sorption water treatment application

On a global scale manganese oxides found in the natural environment are primarily produced by microorganisms. While the mechanisms controlling formation are relatively complex, in addition to enzymes such as MCOs (multicopper oxidases) and peroxidase, and superoxide produced by microorganisms newly found may also take part in this process. Biogenic manganese oxides are of high sorption and oxidation activity, and their crystal structures and activity evolve rapidly. For example, primary biogenic Mn oxides can induce the rapid oxidation of Mn(Ⅱ), while the secondary Mn oxides can hardly. Mn oxidation by microorganisms is complex and also occur broadly, especially in the water-purification units which treat water containing Mn(Ⅱ), so manganese-oxidizing bacteria and fungi, mechanisms of manganese oxidation, adsorption and oxidation capacity, and potential application in water treatment processes are reviewed herein to better understand biogenic manganese oxides. Fig 3, Ref 102


1 张杰, 李冬, 杨宏, 陈立学, 高洁. 生物固锰除锰机理与工程技术[M]. 北京: 中国建筑工业出版社, 2004. 108-208
2 Popp JL, Kalyanaraman B, Kirk TK. Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alcohol, malonic or oxalic-acid, and oxygen [J]. Biochemistry, 1990, 29 (46): 10475-10480
3 Shiller AM, Stephens TH. Microbial manganese oxidation in the lower Mississippi River: methods and evidence [J]. Geomicrobiol J, 2005, 22 (3/4): 117-125
4 Dietrich AM, Cerrato JM, Falkinham JO, Knocke WR, McKinney CW, Pruden A. Manganese-oxidizing and -reducing microorganisms isolated from biofilms in chlorinated drinking water systems [J]. Water Res, 2010, 44 (13): 3935-3945
5 James JM. Kinetics of reaction between O2 and Mn(II) species in aqueous solutions [J]. Geochim Cosmochim Acta, 2005, 69 (1): 35-48
6 Tani Y, Ohashi M, Miyata N, Seyama H, Iwahori K, Soma M. Sorption of Co(II), Ni(II), and Zn(II) on biogenic manganese oxides produced by a Mn-oxidizing fungus, strain KR21-2 [J]. J Environ Sci Health Part A, 2004, 39 (10): 2641-2660
7 Nelson YM, Lion LW, Shuler ML, Ghiorse WC. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures [J]. Environ Sci Technol, 2002, 36 (3): 421-425
8 Learman DR, Wankel SD, Webb SM, Martinez N, Madden AS, Hansel CM. Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides [J]. Geochim Cosmochim Acta, 2011, 75 (20): 6048-6063
9 Corstjens PLAM, DeVrind JPM, Goosen T, DeVrinddeJong EW. Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains [J]. Geomicrobiol J, 1997, 14 (2): 91-108
10 Brouwers GJ, de Vrind JPM, Corstjens P, Cornelis P, Baysse C, DeJong E. cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1 [J]. Appl Environ Microbiol, 1999, 65 (4): 1762-1768
11 Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067 [J]. Environ Microbiol, 2007, 9 (4): 944-953
12 Dick GJ, Torpey JW, Beveridge TJ, Tebo BA. Direct identification of a bacterial Manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species [J]. Appl Environ Microbiol, 2008, 74 (5): 1527-1534
13 Bargar JR, Tebo BM, Villinski JE. In situ characterization of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 [J]. Geochim Cosmochim Acta, 2000, 64 (16): 2775-2778
14 Tebo BM, Webb SM, Dick GJ, Bargar JR. Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II) [J]. Proceed Nat Acad Sci USA, 2005, 102 (15): 5558-5563
15 Petkov V, Ren Y, Saratovsky I, Paste?n P, Gurr SJ, Hayward MA, Poeppelmeier KR, Gaillard JF. Atomic-scale structure of biogenic materials by total X-ray diffraction: a study of bacterial and fungal MnOx [J]. ACS Nano, 2009, 3 (2): 441-445
16 Webb SM, Tebo BM, Bargat JR. Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp. strain SG-1 [J]. Am Miner, 2005, 90 (8-9): 1342-1357
17 Bargar JR, Webb SM, Tebo BM. EXAFS, XANES and in-situ SR-XRD characterization of biogenic manganese oxides produced in sea water [J]. Phys Scr, 2005, T115: 888-890
18 Villalobos M, Toner B, Bargar J, Sposito G. Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1 [J]. Geochim Cosmochim Acta, 2003, 67 (14): 2649-2662
19 Tani Y, Miyata N, Ohashi M, Ohnuki T, Seyama H, Iwahori K, Soma M. Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21-2 [J]. Environ Sci Technol, 2004, 38 (24): 6618-6624
20 Tebo BM, Murray KJ. Cr(III) is indirectly oxidized by the Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1 [J]. Environ Sci Technol, 2007, 41 (2): 528-533
21 Verstraete W, Forrez I, Carballa M, Fink G, Wick A, Hennebel T, Vanhaecke L, Ternes T, Boon N. Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor [J]. Water Res, 2011, 45 (4): 1763-1773
22 Li D, Zhang J, Wang HT, Chen LX, Wang H. Application of biological process to treat the groundwater with high concentration of iron and manganese [J]. J Water Supply Res Technol-Aqua, 2006, 55 (5): 313-320
23 Zouboulis A, Katsoyiannis I, Althoff H, Bartel H. As(III) removal from groundwaters using fixed-bed upflow bioreactors. Chemosphere, 2002, 47 (3): 325-332
24 Murray JW, Dillard JG, Giovanoli R, Moers H, Stumm W. Oxidation of Mn(II): initial mineralogy, oxidation state and ageing [J]. Geochim Cosmochim Acta, 1985, 49 (2): 463-470
25 Johnson HA, Tebo BM. In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation [J]. Arch Microbiol, 2008, 189 (1): 59-69
26 Anderson CR, Johnson HA, Caputo N, Davis RE, Torpey JW, Tebo BM. Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21 [J]. Appl Environ Microbiol, 2009, 75 (12): 4130-4138
27 Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM. Formation of manganese oxides by bacterially generated superoxide [J]. Nat Geosci, 2011, 4 (2): 95-98
28 Glenn JK, Akileswaran L, Gold MH. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete-Chrysosporium [J]. Arch Biochem Biophys, 1986, 251 (2): 688-696
29 Khindaria A, Barr DP, Aust SD. Lignin peroxidases can also oxidize manganese [J]. Biochemistry, 1995, 34 (23): 7773-7779
30 Schlosser D, Hofer C. Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase [J]. Appl & Environ Microbiol, 2002, 68 (7): 3514-3521
31 Hofer C, Schlosser D. Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase [J]. FEBS Lett, 1999, 451 (2): 186-190
32 Tebo BM, Johnson HA, McCarthy JK, Templeton AS. Geomicrobiology of manganese(II) oxidation [J]. Trends Microbiol, 2005, 13 (9): 421-428
33 Popp JL, Kirk TK. Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+ [J]. Arch Biochem Biophys, 1991, 288 (1): 145-148
34 Devrind JPM, Devrinddejong EW, Devoogt JWH, Westbroek P, Boogerd FC, Rosson RA. Manganese oxidation by spores and spore coats of a marine Bacillus species [J]. Appl Environ Microbiol, 1986, 52 (5): 1096-1100
35 Mandernack KW, Post J, Tebo BM. Manganese mineral formation by bacterial-spores of the marine Bacillus, strain SG-1 - evidence for the direct oxidation of Mn(II) to Mn(IV) [J]. Geochim Cosmochim Acta, 1995, 59 (21): 4393-4408
36 Okazaki M, Sugita T, Shimizu M, Ohode Y, Iwamoto K, deVrinddeJong EW, deVrind JPM, Corstjens P. Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1 [J]. Appl Environ Microbiol, 1997, 63 (12): 4793-4799
37 de Vrind JPM, Brouwers GJ, Corstjens PLAM, den Dulk J, de Vrind-de Jong EW. The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1 [J]. Appl Environ Microbiol, 1998, 64 (10): 3556-3562
38 Boogerd FC, Devrind JPM. Manganese oxidation by Leptothrix-Discophora [J]. J Bacteriol, 1987, 169 (2): 489-494
39 Corstjens PLAM, Devrind JPM, Westbroek P, Devrinddejong EW. Enzymatic iron oxidation by Leptothrix-Discophora - identification of an iron-oxidizing protein [J]. Appl Environ Microbiol, 1992, 58 (2): 450-454
40 Adams LF, Ghiorse WC. Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1 [J]. J Bacteriol, 1987, 169 (3): 1279-1285
41 Larsen EI, Sly LI, McEwan AG. Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067 [J]. Arch Microbiol, 1999, 171 (4): 257-264
42 Esilva AC, Esposito E, Ferraz A, Duran N. Decay of Parkia-Oppositifolia in amazonia by Pycnoporus-Sanguineus and potential use for effluent decolorization [J]. Holzforschung, 1993, 47 (5): 361-368
43 Archibald F, Roy B. Production of manganic chelates by laccase from the lignin-degrading fungus trametes (Coriolus) versicolor [J]. Appl Environ Microbiol, 1992, 58 (5): 1496-1499
44 Takano K, Itoh Y, Ogino T, Kurosawa K, Sasaki K. Phylogenetic analysis of manganese-oxidizing fungi isolated from manganese-rich aquatic environments in Hokkaido, Japan [J]. Limnology, 2006, 7 (3): 219-223
45 Miyata N, Tani Y, Iwahori K, Soma M. Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2 [J]. FEMS Microbiol Ecol, 2004, 47 (1): 101-109
46 Najafpour MM, Pashaei B, Nayeri S. Calcium manganese(iv) oxides: biomimetic and efficient catalysts for water oxidation [J]. Dalton Trans, 2012, 41 (16): 4799-4805
47 Glenn JK, Gold MH. Purification and characterization of an extracellular Mn(ii)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete-Chrysosporium [J]. Arch Biochem Biophys, 1985, 242 (2): 329-341
48 Papinutti L, Martinez MJ. Production and characterization of laccase and manganese peroxidase from the ligninolytic fungus Fomes sclerodermeus [J]. J Chem Technol & Biotechnol, 2006, 81 (6): 1064-1070
49 Tebo BM, Ghiorse WC, vanWaasbergen LG, Siering PL, Caspi R. Bacterially mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies [J]. Geomicrobiol Interact Microbes Miner, 1997, 35 225-266
50 Miyata N, Tani Y, Sakata M, Iwahori K. Microbial manganese oxide formation and interaction with toxic metal ions [J]. J Biosci Bioengin, 2007, 104 (1): 1-8
51 Wariishi H, Valli K, Gold MH. Manganese(IIi) oxidation by manganese peroxidase from the basidiomycete Phanerochaete-Chrysosporium - kinetic mechanism and role of chelators [J]. J Biol Chem, 1992, 267 (33): 23688-23695
52 Hansard SP, Easter HD, Voelker BM. Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater [J]. Environ Sci Technol, 2011, 45 (7): 2811-2817
53 Lion LW, Zhang JH, Nelson YM, Shuler ML, Ghiorse WC. Kinetics of Mn(II) oxidation by Leptothrix discophora SS1 [J]. Geochim Cosmochim Acta, 2002, 66 (5): 773-781
54 Dzedzyulya EI, Becker EG. Mn-peroxidase from Bjerkandera adusta 90-41. Purification and substrate specificity [J]. Biochemistry-Moscow, 2000, 65 (6): 707-712
55 Sasaki K, Matsuda M, Hirajima T, Takano K, Konno H. Immobilization of Mn(II) ions by a Mn-oxidizing fungus - Paraconiothyrium sp.-like strain at neutral pHs [J]. Mater Trans, 2006, 47 (10): 2457-2461
56 Miyata N, Tani Y, Maruo K, Tsuno H, Sakata M, Iwahori K. Manganese(IV) oxide production by Acremonium sp. strain KR21-2 and extracellular Mn(II) oxidase activity [J]. Appl Environ Microbiol, 2006, 72 (10): 6467-6473
57 Tebo BM, Francis CA. cumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains [J]. Appl Environ Microbiol, 2001, 67 (9): 4272~4278
58 de Vrind-de Jong EW, Brouwers GJ, Vijgenboom E, Corstjens PLAM, De Vrind JPM. Bacterial Mn2+ oxidizing systems and multicopper oxidases: an overview of mechanisms and functions [J]. Geomicrobiol J, 2000, 17 (1): 1-24
59 Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM. Biogenic manganese oxides: properties and mechanisms of formation [J]. Annu Rev Earth Planet Sci, 2004, 32: 287-328
60 Geszvain K, Tebo BM. Identification of a two-component regulatory pathway essential for Mn(II) oxidation in Pseudomonas putida GB-1 [J]. Appl Environ Microbiol, 2010, 76 (4): 1224-1231
61 Hansel CM, Francis CA. Coupled photochemical and enzymatic Mn(II) oxidation pathways of a planktonic Roseobacter-like bacterium [J]. Appl Environ Microbiol, 2006, 72 (5): 3543-3549
62 Nelson YM, Lion LW, Ghiorse WC, Shuler ML. Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics [J]. Appl Environ Microbiol, 1999, 65 (1): 175-180
63 Kim SS, Bargar JR, Nealson KH, Flood BE, Kirschvink JL, Raub TD, Tebo BM, Villalobos M. Searching for biosignatures using electron paramagnetic resonance (EPR) analysis of manganese oxides [J]. Astrobiology, 2011, 11 (8): 775-786
64 Conklin MH, Kay JT, Fuller CC, O’Day PA. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, globe mining district, Arizona [J]. Environm Sci Technol, 2001, 35 (24): 4719-4725
65 Ouvrard S, Simonnot MO, Sardin M. Reactive behavior of natural manganese oxides toward the adsorption of phosphate and arsenate [J]. Ind Engin Chem Res, 2002, 41 (11): 2785-2791
66 Meng YT, Zheng YM, Zhang LM, He JZ. Biogenic Mn oxides for effective adsorption of Cd from aquatic environment [J]. Environ Poll, 2009, 157 (8/9): 2577-2583
67 李圭白, 杨艳玲, 李星, 李虹. 锰化合物净水技术[M]. 北京: 中国建筑工业出版社, 2006. 26-40
68 Duckworth OW, Bargar JR, Sposito G. Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides [J]. Geochim Cosmochim Acta, 2008, 72 (14): 3371-3380
69 Katsoyiannis IA, Zouboulis AI, Jekel M. Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxides during groundwater treatment [J]. Ind Engin Chem Res, 2004, 43 (2): 486-493
70 Villalobos M, Bargar J, Sposito G. Mechanisms of Pb(II) sorption on a biogenic manganese oxide [J]. Environ Sci Technol, 2005, 39 (2): 569-576
71 Saratovsky I, Wightman PG, Pasten PA, Gaillard JF, Poeppelmeier KR. Manganese oxides: parallels between abiotic and biotic structures [J]. J Am Chem Soc, 2006, 128 (34): 11188-11198
72 Zhu MQ, Ginder-Vogel M, Sparks DL. Ni(II) sorption on biogenic Mn-oxides with varying Mn octahedral layer structure [J]. Environ Sci Technol, 2010, 44 (12): 4472-4478
73 Zhu MQ, Ginder-Vogel M, Parikh SJ, Feng XH, Sparks DL. Cation Effects on the layer structure of biogenic Mn-oxides [J]. Environ Sci Technol, 2010, 44 (12): 4465-4471
74 Waite TD, Wrigley IC, Szymczak R. Photoassisted Dissolution of a Colloidal Manganese Oxide in the Presence of Fulvic-Acid [J]. Environ Sci Technol, 1988, 22 (7): 778-785
75 Sunda WG, Kieber DJ. Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates [J]. Nature, 1994, 367 (6458): 62-64
76 Skarpeli-Liati M, Jiskra M, Turgeon A, Garr AN, Arnold WA, Cramer CJ, Schwarzenbach RP, Hofstetter TB. Using nitrogen isotope fractionation to assess the oxidation of substituted anilines by manganese oxide [J]. Environ Sci Technol, 2011, 45 (13): 5596-5604
77 Ulrich HJ, Stone AT. The oxidation of chlorophenols adsorbed to manganese oxide surfaces [J]. Environ Sci Technol, 1989, 23 (4): 421-428
78 Rudder Jd, Wiele TVd, Dhooge W, Comhaire F, Verstraete W. Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2) [J]. Water Res, 2004, 38 (1): 184-192
79 Xu L, Xu C, Zhao M, Qiu Y, Sheng GD. Oxidative removal of aqueous steroid estrogens by manganese oxides [J]. Water Res, 2008, 42 (20): 5038-5044
80 Barrett KA, McBride MB. Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide [J]. Environ Sci Technol, 2005, 39 (23): 9223-9228
81 Zhang HC, Huang CH. Reactivity and transformation of antibacterial N-oxides in the presence of manganese oxide [J]. Environ Sci Technol, 2005, 39 (2): 593-601
82 Chen WR, Ding YJ, Johnston CT, Teppen BJ, Boyd SA, Li H. Reaction of lincosamide antibiotics with manganese oxide in aqueous solution [J]. Environ Sci Technol, 2010, 44 (12): 4486-4492
83 Rubert KF, Pedersen JA. Kinetics of oxytetracycline reaction with a hydrous manganese oxide [J]. Environ Sci Technol, 2006, 40 (23): 7216-7221
84 Forrez I, Carballa M, Verbeken K, Vanhaecke L, Schlusener M, Ternes T, Boon N, Verstraete W. Diclofenac oxidation by biogenic manganese oxides [J]. Environ Sci Technol, 2010, 44 (9): 3449-3454
85 Tebo BM, Murray KJ, Webb SM, Bargar JR. Indirect oxidation of Co(II) in the presence of the marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1 [J]. Appl Environ Microbiol, 2007, 73 (21): 6905-6909
86 Driehaus W, Seith R, Jekel M. Oxidation of Arsenate(III) with manganese oxides in water-treatment [J]. Water Res, 1995, 29 (1): 297-305
87 Chinni S, Anderson CR, Ulrich KU, Giammar DE, Tebo BM. Indirect UO(2) oxidation by Mn(II)-oxidizing spores of Bacillus sp. strain SG-1 and the effect of U and Mn concentrations [J]. Environ Sci Technol, 2008, 42 (23): 8709-8714
88 Lafferty BJ, Ginder-Vogel M, Zhu MQ, Livi KJT, Sparks DL. Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction [J]. Environ Sci Technol, 2010, 44 (22): 8467-8472
89 Nico PS, Anastasio C, Zasoski RJ. Rapid photo-oxidation of Mn(II) mediated by humic substances [J]. Geochim Cosmochim Acta, 2002, 66 (23): 4047-4056
90 Aurélie Godrant ALR, Géraldine Sarthou, T. David Waite. New method for the determination of extracellular production of superoxide by marine phytoplankton using the chemiluminescence probes MCLA and red-CLA [J]. Limnologyandoceanogr Methods, 2009, 7: 682-692
91 Rose AL, Webb EA, Waite TD, Moffett JW. Measurement and implications of nonphotochemically generated superoxide in the equatorial Pacific Ocean [J]. Environ Sci Technol, 2008, 42 (7): 2387-2393
92 Parker DL, Sposito G, Tebo BM. Manganese(III) binding to a pyoverdine siderophore produced by a Manganese(II)-oxidizing bacterium [J]. Geochim Cosmochim Acta, 2004, 68 (23): 4809-4820
93 Farnsworth CE, Voegelin A, Hering JG. Manganese oxidation induced by water table fluctuations in a sand column [J]. Environ Sci Technol, 2012, 46 (1): 277-284
94 Hope CK, Bott TR. Laboratory modelling of manganese biofiltration using biofilms of Leptothrix discophora [J]. Water Res, 2004, 38 (7): 1853-1861
95 Pacini VA, Ingallinella AM, Sanguinetti G. Removal of iron and manganese using biological roughing up flow filtration technology [J]. Water Res, 2005, 39 (18): 4463-4475
96 Sharma SK, Petrusevski B, Schippers JC. Biological iron removal from groundwater: a review [J]. J Water Supply Res Technol-Aqua, 2005, 54 (4): 239-247
97 Zouboulis AI, Katsoyiannis IA. Recent advances in the bioremediation of arsenic-contaminated groundwaters [J]. Environ Intern, 2005, 31 (2): 213-219
98 Katsoylannis IA, Zouboulis AI. Use of iron- and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater [J]. Water Qual Res J Can, 2006, 41 (2): 117-129
99 Gagnon GA, Burger MS, Mercer SS, Shupe GD. Manganese removal during bench-scale biofiltration [J]. Water Res, 2008, 42 (19): 4733-4742
100 Verstraete W, Forrez I, Carballa M, Noppe H, De Brabander H, Boon N. Influence of manganese and ammonium oxidation on the removal of 17 alpha-ethinylestradiol (EE2) [J]. Water Res, 2009, 43 (1): 77-86
101 Verstraete W, Hennebel T, De Gusseme B, Boon N. Biogenic metals in advanced water treatment [J]. Trends Biotechnol, 2009, 27 (2): 90-98
102 Vandenabeele J, Vandewoestyne M, Houwen F, Germonpre R, Vandesande D, Verstraete W. Role of autotrophic nitrifiers in biological manganese removal from groundwater containing manganese and ammonium [J]. Microb Ecol, 1995, 29 (1): 83-98


Last Update: 2013-02-26