|Table of Contents|

Influence of single-walled carbon nanotubes on the growth and phenol biodegradation characteristics of Arthrobacter sp. W1(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2015 03
Research Field:
Publishing date:


Influence of single-walled carbon nanotubes on the growth and phenol biodegradation characteristics of Arthrobacter sp. W1
LI Duanxing WANG Jingwei SHEN Wenli ZHANG Zhaojing LI Shuzhen LI Huijie LIU Ziyan MA Qiao QU Yuanyuan ZHOU Jiti
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
single-walled carbon nanotubes phenol action mechanisms biodegradation Arthrobacter sp.

With the extensive production and application of single-walled carbon nanotubes (SWCNTs), their potential effects on biological systems and human health have attracted much research attention. Most researches used Escherichia coli as model strain and observed strong antimicrobial activity of SWCNTs, rarely paying attention to the effects of SWCNTs on functional microorganisms. This research investigated the growth curves and degradation curves of a phenol-degrading bacterium Arthrobacter sp. W1 influenced by different concentrations of SWCNTs, through scanning electron microscopic observation, viability test, cellular integrity analysis and reactive oxidative stress analysis. The results showed that 0.5-5.0 mg/L SWCNTs would accelerate phenol degrading process, and 1.5-2.0 mg/L SWCNTs had no antibacterial effects on strain W1. SWCNTs aggregates would adsorb cells with the toxicity mainly caused by physical piercing. While in systems with certain concentrations of SWCNTs, the SWCNTs-cells-phenol coexisting systems would create a suitable microenvironment for W1 growth and phenol degradation. This study would provide theoretical foundation for revealing the microbial effects of SWCNTs.


1 Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers [J]. Carbon, 1995, 33 (7): 873-881
2 Cai Y, Lin JD, Chen HB, Zhang HB, Lin GD, Liao DW. Novel Ru-K/carbon nanotubes catalyst for ammonia synthesis [J]. Chin Chem Lett, 2000, 11 (4): 373-374
3 Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L. Elastic and shear moduli of single-walled carbon nanotube ropes [J]. Phys Rev Lett, 1999, 82 (5): 944
4 Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation [J]. Toxicol Sci, 2004, 77 (1): 126-134
5 Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D. Respiratory toxicity of multi-wall carbon nanotubes [J]. Toxicol Appl Pharm, 2005, 207 (3): 221-231
6 金霏霏, 尹颖, 黄娟, 郭红岩, 杨柳燕. 腐殖酸 (HA) 作用下纳米氧化锌对鲫鱼的毒性效应[J]. 应用与环境生物学报, 2011, 17 (6): 829-832 [Jin FF, Yin Y, Huang J, Guo HY, Yang LY. Effect of HA on ecotoxicity of nanoZnO in Carassius auratus [J]. Chin J Appl Environ Biol, 2011, 17 (6): 829-832]
7 刘银银, 李峰, 孙庆业, 谢永宏. 湿地生态系统土壤微生物研究进展[J]. 应用与环境生物学报, 2013, 19 (3): 547-552 [Liu YY, Li F, Sun QY, Xie YH. Review on the study of soil microorganisms in wetland ecosystems [J]. Chin J Appl Environ Biol, 2013, 19 (3): 547-552]
8 Kang S, Pinault M, Pfefferle LD, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity [J]. Langmuir, 2007, 23: 8670-8673
9 Kang S, Herzberg M, Rodrigues DF, Elimelech M. Antibacterial effects of carbon nanotubes: size does matter! [J]. Langmuir, 2008, 24: 6409-6413
10 Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL. Nano-C60 cytotoxicity is due to lipid peroxidation [J]. Biomaterials, 2005, 26 (36): 7587-7595
11 Ong YT, Ahmad AL, Zein SHS, Tan SH. A review on carbon nanotubes in an environmental protection and green engineering perspective [J]. Braz J Chem Eng, 2010, 27 (2): 227-242
12 Rodrigues DF, Elimelech M. Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm [J]. Environ Sci Technol, 2010, 44 (12): 4583-4589
13 王平. 高盐含酚废水生物处理及微生物群落结构研究[D]. 大连: 大连理工大学, 2009 [Wang P. Studies on biodegradation of phenolic hyper-saline wastewater and dynamics of microbial community structure during the treatment process [D]. Dalian: Dalian University of Technology, 2009]
14 Yang C, Mamouni J, Tang Y, Yang L. Antimicrobial activity of single-walled carbon nanotubes: length effect [J]. Langmuir, 2010, 26 (20): 16013-16019
15 Bai Y, Park IS, Lee SJ, Bae TS, Watari F, Uo M, Lee MH. Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent [J]. Carbon, 2011, 49 (11): 3663-3671
16 Arias LR, Yang L. Inactivation of bacterial pathogens by carbon nanotubes in suspensions [J]. Langmuir, 2009, 25 (5): 3003-3012
17 Fan JL, Cai HB, Tan WS. Role of the plasma membrane ROS-generating NADPH oxidase in CD34+ progenitor cells preservation by hypoxia [J]. J Bio Technol, 2007, 130 (4): 455-462.
18 孙明礼, 成荣明, 徐学诚, 陈奕卫, 李茂刚. 苯酚及取代酚在碳纳米管上的吸附研究[J]. 化学研究与应用, 2006, 18 (1): 13-18 [Sun ML, Cheng RM, Xu XC, Chen YW, Li MG. Studies on adsorption of phenol and substituted phenols on carbon nanotubes [J]. Chem Res Appl, 2006, 18 (1): 13-18]
19 崔春月, 郑庆柱, 胡春光, 刘强. 多壁碳纳米管对水中五氯苯酚的吸附性能研究[J]. 环境科学与技术, 2010, 33 (5): 67-70 [Cui CY, Zheng QZ, Hu CG, Liu Q. Adsorption of pentachlorophenol on multi-walled carbon nanotubes [J]. Environ Sci Technol, 2010, 33 (5): 67-70]
20 Song MY, Zeng LZ, Yuan SP, Yin JF, Wang HL, Jiang GB. Study of cytotoxic effects of single-walled carbon nanotubes functionalized with different chemical groups on human MCF7 cells [J]. Chemosphere, 2013, 92: 576-582
21 Park HJ, Nguyen TTM, Yoon J, Lee C. Role of reactive oxygen species in Escherichia coli inactivation by cupric ion [J]. Environ Sci Technol, 2012, 46 (20): 11299-11304
22 Cui Y, Zhao YY, Tian Y, Zhang W, Lu XY, Jiang XY. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli [J]. Biomaterials, 2012, 33: 2327-2333


Last Update: 2015-06-23